Quotients of Divisorial Toric Varieties

نویسنده

  • J. HAUSEN
چکیده

We consider subtorus actions on divisorial toric varieties. Here divisoriality means that the variety has many Cartier divisors like quasiprojective and smooth ones. We characterize when a subtorus action on such a toric variety admits a categorical quotient in the category of divisorial varieties. Our result generalizes previous statements for the quasiprojective case. A first step in the proof is a universal reduction of an arbitrary toric variety to a divisorial one. This is done in terms of support maps, a notion generalizing support functions on a polytopal fan. A further essential step is the decomposition of a given subtorus invariant regular map to a divisorial variety into an invariant toric part followed by a non-toric part.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gluing Affine Torus Actions via Divisorial Fans

Generalizing the passage from a fan to a toric variety, we provide a combinatorial approach to construct arbitrary effective torus actions on normal, algebraic varieties. Based on the notion of a “proper polyhedral divisor” introduced in earlier work, we develop the concept of a “divisorial fan” and show that these objects encode the equivariant gluing of affine varieties with torus action. We ...

متن کامل

Toric Fano varieties with divisorial contractions to curves

In this paper, we obtain a complete classification of smooth toric Fano varieties equipped with extremal contractions which contract divisors to curves for any dimension. As an application, we obtain a complete classification of smooth projective toric varieties which can be equivariantly blown-up to Fano along curves.

متن کامل

Homogeneous Coordinates and Quotient Presentations for Toric Varieties

Generalizing cones over projective toric varieties, we present arbitrary toric varieties as quotients of quasiaffine toric varieties. Such quotient presentations correspond to groups of Weil divisors generating the topology. Groups comprising Cartier divisors define free quotients, whereas Q-Cartier divisors define geometric quotients. Each quotient presentation yields homogeneous coordinates. ...

متن کامل

Tropical Compactifications

We study compactifications of very affine varieties defined by imposing a polyhedral structure on the non-archimedean amoeba. These com-pactifications have divisorial boundary with combinatorial normal croosings. We consider some examples including M 0,n ⊂ M 0,n (and more generally log canonical models of complements of hyperplane arrangements) and tropical recompactifications of Chow quotients...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002